secluded from the light. The guiding stimulus no doubt is the attraction of gravity, as Andrew Knight showed to be the case with germinating plants. If a shoot of any ordinary plant be placed in an inclined position in a glass of water in the dark, the extremity will, in a few hours, bend upward; and, if the position of the shoot be then reversed, the downward-bent shoot reverses its curvature ; but if the stolon of a strawberry, which has no tendency to grow upward, be thus treated, it will curve downward in the direction of, instead of in opposition to, the force of gravity. As with the strawberry, so it is generally with the twining shoots of the Hibbertia dentata, which climbs laterally from bush to bush; for these shoots, if placed in a position inclined downward, show little and sometimes no tendency to curve upward. 3. Climbing plants, like other plants, bend toward the light by a movement closely analogous to the incurvation which causes them to revolve, so that their revolving movement is often accelerated or retarded in traveling to or from the light. On the other hand, in a few instances tendrils bend toward the dark. 4. We have the spontaneous revolving movement which is independent of any outward stimulus, but is contingent on the youth of the part, and on vigorous health; and this again, of course, depends on a proper temperature and other favorable conditions of life. 5. Tendrils, whatever their homological nature may be, and the petioles or tips of the leaves of leaf-climbers, and apparently certain roots, all have the power of movement when touched, and bend quickly toward the touched side. Extremely slight pressure often suffices. If the pressure be not permanent, the part in question straightens itself and is again ready to bend on being touched. 6. Tendrils, soon after clasping a support, but not after a mere temporary curvature, contract spirally. If they have not come into contact with any object, they ultimately contract spirally, after ceasing to revolve; but in this case the movement is useless, and occurs only after a considerable lapse of time. With respect to the means by which these various movements are effected, there can be little doubt, from the researches of Sachs and H. de Vries, that they are due to unequal growth; but, from the reasons already assigned, I can not believe that this explanation applies to the rapid movements from a delicate touch. Finally, climbing plants are sufficiently numerous to form a conspicuous feature in the vegetable kingdom, more especially in tropical forests. America, which so abounds with arboreal animals, as Mr. Bates remarks, likewise abounds, according to Mohl and Palm, with climbing plants; and, of the tendril-bearing plants examined by me, the highest developed kinds are natives of this grand continent, namely, the several species of Bignonia, Eccremocarpus, Cobœa, and Ampelopsis. But even in the thickets of our temperate regions the number of climbing species and individuals is considerable, as will be found by counting them. THE POWER OF MOVEMENT IN ANIMAL AND PLANT COMPARED. It has often been vaguely asserted that Page 206. plants are distinguished from animals by not having the power of movement. It should rather be said that plants acquire and display this power only when it is of some advantage to them; this being of comparatively rare occurrence, as they are affixed to the ground, and food is brought to them by the air and rain. We see how high in the scale of organization a plant may rise, when we look at one of the more perfect tendril-bearers. It first places its tendrils ready for action, as a polypus places its tentacula. If the tendril be displaced, it is acted on by the force of gravity and rights itself. It is acted on by the light, and bends toward or from it, or disregards it, whichever may be most advantageous. During several days the tendrils or internodes, or both, spontaneously revolve with a steady motion. The tendril strikes some object, and quickly curls round and firmly grasps it. In the course of some hours it contracts into a spire, dragging up the stem, and forming an excellent spring. All movements now cease. By growth the tissues soon become wonderfully strong and durable. The tendril has done its work, and has done it in an admirable manner. The Power It is impossible not to be struck with the of Movement in Plants, resemblance between the foregoing movements page 571. of plants and many of the actions performed unconsciously by the lower animals. With plants an astonishingly small stimulus suffices; and even with allied plants one may be highly sensitive to the slightest continued pressure, and another highly sensitive to a slight momentary touch. The habit of moving at certain periods is inherited both by plants and animals; and several other points of similitude have been specified. But the most striking resemblance is the localization of their sensitiveness, and the transmission of an influence from the excited part to another which consequently moves. Yet plants do not, of course, possess nerves or a central nervous system; and we may infer that with animals such structures serve only for the more perfect transmission of impressions, and for the more complete intercommunication of the several parts. The Effects of Cross and Self Fertilization in the Vegetable Kingdom, page 443. ADVANTAGES OF CROSS-FERTILIZATION. There are two important conclusions which may be deduced from my observations: 1. That the advantages of cross-fertilization do not follow from some mysterious virtue in the mere union of two distinct individuals, but from such individuals having been subjected during previous generations to different conditions, or to their having varied in a manner commonly called spontaneous, so that in either case their sexual elements have been in some degree differentiated; and, 2. That the injury from selffertilization follows from the want of such differentiation in the sexual elements. These two propositions are fully established by my experiments. Thus, when plants of the Ipomea and of the Mimulus, which had been selffertilized for the seven previous generations, and had been kept all the time under the same conditions, were intercrossed one with another, the offspring did not profit in the least by the cross. The curious cases of plants which can fer Page 451. tilize and be fertilized by any other individual of the same species, but are altogether sterile with their own pollen, become intelligible, if the view here propounded is correct, namely, that the individuals of the same species growing in a state of nature near together have not really been subjected during several previous generations to quite the same conditions. POTENCY OF THE SEXUAL ELEMENTS IN PLANTS. It is obvious that the exposure of two sets Page 446. of plants during several generations to differ ent conditions can lead to no beneficial results, as far as crossing is concerned, unless their sexual elements are thus affected. That every organism is acted on to a certain extent by a change in its environment will not, I presume, be disputed. It is hardly necessary to advance evidence on this head; we can perceive the difference between individual plants of the same species which have grown in somewhat more shady or sunny, dry or damp places. Plants which have been propagated for some generations under different climates or at different seasons of the year transmit different constitutions to their seedlings. Under such circumstances, the chemical constitution of their fluids and the nature of their tissues are often modified. Many other such facts could be adduced. In short, every alteration in the function of a part is probably connected with some corresponding, though often quite imperceptible, change in structure or composition. Whatever affects an organism in any way, likewise tends to act on its sexual elements. We see this in the inheritance of newly acquired modifications, such as those from the increased use or disuse of a part, and even from mutilations if followed by disease. We have abundant evidence how susceptible the reproductive system is to changed conditions, in the many instances of animals rendered sterile by confinement; so that they will not unite, or, if they unite, do not produce offspring, though the confinement may be far from close; and of plants rendered sterile by cultivation. But hardly any cases afford more striking evidence how powerfully a change in the conditions of life acts on the sexual elements than those already given, of plants which are completely self-sterile in one country, and, when brought to another, yield, even in the first generation, a fair supply of self-fertilized seeds. |