صور الصفحة
PDF
النشر الإلكتروني

come converted into the various tissues and substances of the body. But besides this means of increase I assume that the units throw off minute granules which are dispersed throughout the whole system; that these, when supplied with proper nutriment, multiply by self-division, and are ultimately developed into units like those from which they were originally derived. These granules may be called gemmules. They are collected from all parts of the system to constitute the sexual elements, and their development in the next generation forms a new being; but they are likewise capable of transmission in a dormant state to future generations and may then be developed. Their development depends on their union with other partially developed or nascent cells which precede them in the regular course of growth. Why I use the term union will be seen when we discuss the direct action of pollen on the tissues of the mother-plant. Gemmules are supposed to be thrown off by every unit, not only during the adult state, but during each stage of development of every organism; but not necessarily during the continued existence of the same unit. Lastly, I assume that the gemmules in their dormant state have a mutual affinity for each other, leading to their aggregation into buds or into the sexual elements. Hence, it is not the reproductive organs or buds which generate new organisms, but the units of which each individual is composed. These assumptions constitute the provisional hypothesis which I have called pangenesis.

Page 372.

But I have further to assume that the gemmules in their undeveloped state are capable of largely multiplying themselves by self-division, like independent organisms. Delpino insists that to "admit of multiplication by fissiparity in corpuscles,

analogous to seeds or buds... is repugnant to all analogy." But this seems a strange objection, as Thuret has seen the zoospore of an alga divide itself, and each half germinated. Haeckel divided the segmented ovum of a siphonophora into many pieces, and these were developed. Nor does the extreme minuteness of the gemmules, which can hardly differ much in nature from the lowest and simplest organisms, render it improbable that they should grow and multiply. A great authority, Dr. Beale, says that "minute yeast-cells are capable of throwing off buds or gemmules, much less than the 10 of an inch in diameter"; and these he thinks are capable of subdivision practically ad infinitum.”

A particle of small-pox matter, so minute as to be borne by the wind, must multiply itself many thousandfold in a person thus inoculated; and so with the contagious matter of scarlet fever. It has recently been ascertained that a minute portion of the mucous discharge from an animal affected with rinderpest, if placed in the blood of a healthy ox, increases so fast that in a short space of time "the whole mass of blood, weighing many pounds, is infected, and every small particle of that blood contains enough poison to give, within less than fortyeight hours, the disease to another animal."

The gemmules derived from each part or Page 374. organ must be thoroughly dispersed throughout the whole system. We know, for instance, that even a minute fragment of a leaf of a begonia will reproduce the whole plant; and that if a fresh-water worm is chopped into small pieces, each will reproduce the whole animal. Considering also the minuteness of the gemmules and the permeability of all organic tissues, the thorough dispersion of the gemmules is not surprising. That

matter may be readily transferred without the aid of vessels from part to part of the body, we have a good instance in a case recorded by Sir J. Paget of a lady, whose hair lost its color at each successive attack of neuralgia and recovered it again in the course of a few days. With plants, however, and probably with compound animals, such as corals, the gemmules do not ordinarily spread from bud to bud, but are confined to the parts developed from each separate bud; and of this fact no explanation can be given.

Page 380.

TWO OBJECTIONS ANSWERED.

But we have here to encounter two objections which apply not only to the regrowth of a part, or of a bisected individual, but to fissiparous generation and budding. The first objection is that the part which is reproduced is in the same stage of development as that of the being which has been operated on or bisected; and in the case of buds, that the new beings thus produced are in the same stage as that of the budding parent. Thus a mature salamander, of which the tail has been cut off, does not reproduce a larval tail; and a crab does not reproduce a larval leg. In the case of budding it was shown in the first part of this chapter that the new being thus produced does not retrograde in development—that is, does not pass through those earlier stages which the fertilized germ has to pass through. Nevertheless, the organisms operated on or multiplying themselves by buds must, by our hypothesis, include innumerable gemmules derived from every part or unit of the earlier stages of development; and why do not such gemmules reproduce the amputated part or the whole body at a corresponding early stage of development ?

The second objection, which has been insisted on by Delpino, is that the tissues, for instance, of a mature salamander or crab, of which a limb has been removed, are already differentiated and have passed through their whole course of development; and how can such tissues in accordance with our hypothesis attract and combine with the gemmules of the part which is to be reproduced? In answer to these two objections we must bear in mind the evidence which has been advanced, showing that at least in a large number of cases the power of regrowth is a localized faculty, acquired for the sake of repairing special injuries to which each particular creature is liable; and, in the case of buds or fissiparous generation, for the sake of quickly multiplying the organism at a period of life when it can be supported in large numbers. These considerations lead us to believe that in all such cases a stock of nascent cells or of partially developed gemmules are retained for this special purpose either locally or throughout the body, ready to combine with the gemmules derived from the cells which come next in due succession. If this be admitted, we have a sufficient answer to the above two objections. Anyhow, pangenesis seems to throw a considerable amount of light on the wonderful power of regrowth.

Page 392.

EFFECT OF MORBID ACTION.

We have as yet spoken only of the removal of parts, when not followed by morbid action: but, when the operation is thus followed, it is certain that the deficiency is sometimes inherited. In a former chapter instances were given, as of a cow, the loss of whose horn was followed by suppuration, and her calves were destitute of a horn on the same side of their heads.

But the evidence which admits of no doubt is that given by Brown-Séquard with respect to Guinea-pigs, which, after their sciatic nerves had been divided, gnawed off their own gangrenous toes, and the toes of their offspring were deficient in at least thirteen instances on the corresponding feet. The inheritance of the lost part in several of these cases is all the more remarkable as only one parent was affected; but we know that a congenital deficiency is often transmitted from one parent alone-for instance, the offspring of hornless cattle of either sex, when crossed with perfect animals, are often hornless. How, then, in accordance with our hypothesis can we account for mutilations being sometimes strongly inherited, if they are followed by diseased action? The answer probably is that all the gemmules of the mutilated or amputated part are gradually attracted to the diseased surface during the reparative process, and are there destroyed by the morbid action.

Page 396.

TRANSMISSION LIMITED.

The transmission of dormant gemmules during many successive generations is hardly in itself more improbable, as previously remarked, than the retention during many ages of rudimentary organs, or even only of a tendency to the production of a rudiment; but there is no reason to suppose that dormant gemmules can be transmitted and propagated forever. Excessively minute and numerous as they are believed to be, an infinite number, derived, during a long course of modification and descent, from each unit of each progenitor, could not be supported or nourished by the organism. But it does not seem improbable that certain gemmules, under favorable conditions, should be retained and go

« السابقةمتابعة »