Fifth recent advances in quantitative remote sensingJosé Antonio Sobrino Rodríguez Universitat de València, 14 déc. 2018 - 481 pages
The Fifth International Symposium on Recent Advances in Quantitative Remote Sensing was held in Torrent, Spain from 18 to 22 September 2018. It was sponsored and organized by the Global Change Unit (GCU) from the Image Processing Laboratory (IPL), University of Valencia (UVEG), Spain. This Symposium addressed the scientific advances in quantitative remote sensing in connection with real applications. Its main goal was to assess the state of the art of both theory and applications in the analysis of remote sensing data, as well as to provide a forum for researcher in this subject area to exchange views and report their latest results. In this book 89 of the 262 contributions presented in both plenary and poster sessions are arranged according to the scientific topics selected. The papers are ranked in the same order as the final programme. |
À l'intérieur du livre
Résultats 1-5 sur 58
... uncertainty model for Field Spectroscopy M. Jiménez, O. Gutiérrez de la Cámara, A. Moncholí, F. Muñoz 21 Interest of VNIR directional measurements for parameterizing the TIR directional anisotropy Zunjian Bian, Jean-Louis Roujean, Mark ...
... Uncertainty Analysis of the Automated Radiometric Calibration over Baotou Cal&Val Site in China 211 Lingling Ma, Yongguang Zhao, Emma R. Woolliams, Yaokai Liu, Ning Wang, Xinhong Wang, Caihong Dai, Caixia Gao, Chuanrong Li, Lingli Tang ...
... / 2 images . Generally , cloud is easy to be separated from 35 N 30 N 25 N Towards a complete spectral reflectance uncertainty model for Field Spectroscopy. 17 Recent Advances in Quantitative Remote Sensing - RAQRS 2017 RARQS2017-p1.19.
... uncertainty of the spectral reflectance measured must be estimated and reported, taken into account as many important sources of uncertainty as possible. This work presents the initial approach to establish a complete model of uncertainty ...
... uncertainties c8: Expanding uncertainties Follow these eight steps, ensures the development of the complete uncertainty model for a measurand. Furthermore, determining a simplified version of the uncertainty model and then adding ...
Table des matières
RARQS2017p339 | 243 |
RARQS2017p341 | 248 |
RARQS2017p342 | 254 |
RARQS2017s1004 | 260 |
RARQS2017s105 | 265 |
RARQS2017s121 | 270 |
RARQS2017p404 | 276 |
RARQS2017p405 | 282 |
47 | |
51 | |
56 | |
61 | |
67 | |
73 | |
77 | |
82 | |
90 | |
RARQS2017p212 | 95 |
RARQS2017p217 | 104 |
RARQS2017p225 | 107 |
RARQS2017p226 | 112 |
RARQS2017p231 | 118 |
RARQS2017p234 | 123 |
RARQS2017p235 | 128 |
RARQS2017p241 | 138 |
RARQS2017s604 | 144 |
RARQS2017p304 | 151 |
RARQS2017p307 | 157 |
RARQS2017p308 | 162 |
RARQS2017p309 | 168 |
RARQS2017p311 | 174 |
RARQS2017p315 | 180 |
RARQS2017p318 | 186 |
RARQS2017p319 | 191 |
RARQS2017p322 | 197 |
RARQS2017p323 | 202 |
RARQS2017p324 | 206 |
RARQS2017p327 | 211 |
RARQS2017p330 | 217 |
RARQS2017p331 | 223 |
RARQS2017p332 | 227 |
RARQS2017p335 | 232 |
RARQS2017p337 | 238 |
RARQS2017p406 | 287 |
RARQS2017p407 | 292 |
RARQS2017p408 | 296 |
RARQS2017p412 | 303 |
RARQS2017p417 | 312 |
RARQS2017p420 | 318 |
RARQS2017p424 | 323 |
RARQS2017p427 | 327 |
RARQS2017p428 | 332 |
RARQS2017p434 | 337 |
RARQS2017p437 | 342 |
RARQS2017p440 | 346 |
RARQS2017p441 | 351 |
RARQS2017p501 | 356 |
RARQS2017p503 | 362 |
RARQS2017p504 | 368 |
RARQS2017p506 | 374 |
RARQS2017p508 | 379 |
RARQS2017p509 | 384 |
RARQS2017p510 | 387 |
RARQS2017p511 | 391 |
RARQS2017p512 | 396 |
RARQS2017p514 | 402 |
RARQS2017p519 | 407 |
RARQS2017p524 | 412 |
RARQS2017p525 | 418 |
RARQS2017p527 | 425 |
RARQS2017p528 | 430 |
RARQS2017p532 | 436 |
RARQS2017p535 | 443 |
RARQS2017p538 | 449 |
RARQS2017p539 | 454 |
RARQS2017p540 | 460 |
RARQS2017 | 464 |